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Abstract—We study channel-aware binary-decision fusion over
a shared Rayleigh flat-fading channel with multiple antennas
at the Decision Fusion Center (DFC). We present the optimal
rule and derive sub-optimal fusion rules, as alternatives with
improved numerical stability, reduced complexity and lower
system knowledge required. The set of rules is derived following
both “Decode-and-Fuse” and “Decode-then-Fuse” approaches.
Simulation results for performances are presented both under
Neyman-Pearson and Bayesian frameworks. The effect of mul-
tiple antennas at the DFC for the presented rules is analyzed,
showing corresponding benefits and limitations. Also, the effect
on performances as a function of the number of sensors is studied
under a total power constraint.

Index Terms—Decision fusion, distributed detection, MIMO,
wireless sensor networks.

I. INTRODUCTION

A. Motivation

DECISION Fusion (DF) in a wireless sensor network
(WSN) consists in transmitting local decisions about an

observed phenomenon from individual sensors to a DF Center
(DFC) for a final decision. For sake of simplicity, the usual
architecture assumes that each sensor communicates through
a parallel access channel (PAC), which has to be implemented
through time, code or frequency division schemes, since the
wireless channel is “naturally” a broadcast medium [1]–[4].

Recently it has been suggested to exploit the wireless
medium as a multiple-access channel (MAC) for DF while
coping with presence of intrinsic interference [5]. Further-
more, the problem of deep fading was addressed with multiple
antennas at the DFC in order to ameliorate the fusion perfor-
mances [5]–[7]. This choice demands only further complexity
on DFC side and does not affect simplicity of sensors im-
plementation. The result is a communication over a “virtual”
Multiple-Input Multiple-Output (MIMO) channel between the
sensors and the DFC, as shown in Fig. 1. Though appearing a
stringent requirement, instantaneous channel state information
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Fig. 1: The Decision Fusion model in presence of a (virtual)
MIMO channel.

(CSI) is often assumed [6], [7]. Design of channel-aware fu-
sion rules and corresponding high performances motivates this
assumption [2], [4], [8], [9], fulfilled in many scenarios1. For
the same reason, channel-aware fusion rules for coherent, non-
coherent, and differential modulation were already proposed
for PAC [2], [4], [8]–[10].

Unfortunately, the optimal DF rule over MIMO channels
with instantaneous CSI presents several difficulties in the im-
plementation: (i) complete knowledge of channel parameters
and sensors local performances; (ii) numerical instability of
the expression, due to the presence of exponential functions
with large dynamics; (iii) exponential growth of the complex-
ity with the number of sensors. Design of sub-optimal DF rules
with simple implementation and reduced system knowledge is
then extremely desirable.

B. Related Work

A vast literature is present on DF, still growing in the
context of WSNs. Several tutorial papers and books have been
published on the topic, providing extensive references [3],
[11]–[13]. Here we briefly discuss recent related work and
focus on results needed for the work in this paper.

Sub-optimal rules for PAC scenario, presenting only issues
(i) and (ii), were designed in [1], [2], [4], [8]–[10], [14]. More
specifically, the optimal rule was compared to Maximum Ra-
tio Combining (MRC), Chair-Varshney Maximum-Likelihood
(CV-ML), Equal Gain Combining (EGC) and Max-Log. MRC
and CV-ML fusion rules approach optimum performance at
very low and very high channel SNRs, respectively and they

1We focus on the case in which the sensors and the DFC have minimal
movement and the environment changes slowly. More precisely, the coherence
time of the wireless channel is assumed much longer than the time interval
between two consecutive decisions made by the DFC, and instantaneous CSI
can be obtained [7].
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both suffer from a significant performance loss at moderate
channel SNR [1], [2]. Instead EGC was shown to have robust
performance for most SNR range [14]. Max-Log rule has
been shown to outperform all the mentioned rules for all the
SNR range [9]. Furthermore, robust sub-optimal fusion rules
were obtained by fitting various non-linearities to the Log-
Likelihood-Ratio (LLR) in [4]. The rules considered in [9]
have also been derived and compared in the context of sensors
differential encoding [8].

DF in distributed detection over MAC was first considered
in [15], where an algorithm for the design of local-sensor
quantizers was derived for the optimal fusion rule. Also,
several advanced transmission schemes have been proposed
for MAC. In [16], [17] a fully-loaded code-division multiple
access (CDMA) communication between sensors and the DFC
is proposed: DF exploiting instantaneous CSI is performed
and sub-optimal alternatives, based on the partitioning of
transmitted symbols decoding and DF rule, are compared with
the optimum. Also, in [18] a CDMA protocol is considered,
but no decision is performed locally by the sensors, since
they employ an amplify-and-forward scheme. In [19], the
idea of the direct sequence spread spectrum is exploited to
perform a communication based on the On-Off Keying (OOK)
modulation with censoring; at the DFC the optimal rule and
sub-optimal alternatives are derived on the basis only of
statistical CSI.

An alternative and novel communication scheme, based
on the method of types, called Type-Based Multiple Access
(TBMA), has been proposed for distributed detection in [20],
[21]. The scheme relies only on statistical CSI and presents
limited bandwidth requirements. However, it has been shown
in [22] that TBMA suffers from significant loss of perfor-
mances in i.i.d. zero-mean fading channels.

DF over MIMO channels was firstly proposed in [7],
focusing on J-Divergence optimal power allocation under non-
identical local performances, which requires instantaneous
CSI. DF rules over a matrix channel model, with only sta-
tistical CSI knowledge and non-coherent modulation have
been studied in [5]. Distributed detection over MIMO with
instantaneous CSI at the fusion center is tackled with the use of
amplify-and-forward sensors in [6]; the optimum (data) fusion
rule is derived and performance improvement is demonstrated
when using multiple antennas at the fusion center.

C. Main Results and Paper Organization

The main contributions of the paper are summarized as
follows.

• We study the design of channel-aware DF rules over
MIMO channels, to best of our knowledge, for the first
time. We discuss advantages and drawbacks for each
rule in terms of complexity, system knowledge required
and performances. The rules are grouped under Decode-
and-Fuse (DaF) and Decode-then-Fuse (DtF) approaches.
In the former case fusion is performed on the received
signal, while in the latter case fusion is performed
through CV rule, which processes ML or Minimum
Mean Square Error (MMSE) estimate of the transmitted
symbols. Multiple antennas at the DFC are shown to

be beneficial independently of the considered (optimal
or sub-optimal) fusion rule, however a (rule-dependent)
saturation effect is present.

• Optimality properties are analytically demonstrated (in
low and/or high SNR regime) for CV-ML, Max-Log
and MRC over MIMO channel, in perfect analogy to
the PAC case. Also, we formulate efficient Generalized
Sphere Decoder (GSD) [23] implementation to tackle
exponential complexity of the first two rules.

• We show that CV-MMSE outperforms CV-ML in low-to-
moderate SNR regime, since it accounts for the correla-
tion among decisions in the decoding stage. Furthermore,
the co-channel interference of the MIMO channel makes
MRC to outperform EGC under a Neyman-Pearson
framework, in disagreement with PAC case [2].

• We show that each discussed rule, except for MRC,
present an optimal number of sensors to be employed,
under a total power constraint, to minimize the sys-
tem probability of error. Further addition of sensors in
the WSN counter-intuitively degrades the overall per-
formances. Instead the MRC benefits from an indefinite
increase of the number of sensors employed.

The paper is organized as follows: Section II introduces the
system model; Section III presents fusion rules based on DaF
(including the optimum fusion rule) approach, while Section
IV presents fusion rules based on DtF approach; Section VI
presents an extensive set of simulations for performance com-
parison under different scenarios; some concluding remarks
are given in Section VII; proofs and derivations are confined
to Appendices.

Notation - Lower-case (resp. Upper-case) bold letters denote
vectors (resp. matrices), with an (resp. an,m) representing the
nth (resp. the (n,m)th) element of the vector a (resp. matrix
A); upper-case calligraphic letters denote discrete and finite
sets, with AK representing the k-ary Cartesian power of the
set A; IN denotes the N ×N identity matrix; 0N (resp. 1N )
denotes the null (resp. ones) vector of length N ; E{·}, (·)∗,
(·)t, (·)†, � (·), ∠(·) and ‖·‖ denote expectation, conjugate,
transpose, conjugate transpose, real part, phase and Frobenius
norm operators; P (·) and p(·) are used to denote probabilities
and probability density functions (pdf), in particular P (A|B)
and p(a|b) represent the probability of event A conditioned
on event B and the pdf of random variable a conditioned on
random variable b, respectively; NC(μ,Σ) denotes a circular
symmetric complex normal distribution with mean vector μ
and covariance matrix Σ; finally the symbols ∼ and ∝ mean
“distributed as” and “proportional to” respectively.

II. SYSTEM MODEL

We consider a distributed binary hypothesis test, where K
sensors are used to discriminate between the hypotheses of the
set H = {H0, H1}. For example H0 and H1 may represent
the absence and the presence of a specific target of interest,
respectively. The a priori probability of hypothesis Hi ∈ H
is denoted P (Hi). The kth sensor, k ∈ K � {1, 2, . . . ,K},
takes a binary local decision dk ∈ H about the observed
phenomenon on the basis of its own measurements. The
decision dk is assumed independent of each other decisions
d�, � ∈ K, � �= k, conditioned on Hi ∈ H.
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Each decision dk is mapped to a symbol xk ∈ X =
{−1,+1} representing BPSK modulation2: without loss of
generality we assume that dk = H0 maps into xk = −1
and dk = H1 into xk = +1. The quality of the kth
sensor decisions is characterized by the conditional prob-
abilities P (xk|Hj). More specifically, we denote PD,k �
P (xk = 1|H1) and PF,k � P (xk = 1|H0), respectively the
probability of detection and false alarm of the kth sensor.

The sensors communicate with the DFC over a wireless flat-
fading MAC, with i.i.d. Rayleigh fading coefficients of unitary
mean power. The DFC is equipped with N receive antennas in
order to exploit diversity and combat signal attenuation due to
small-scale fading of the wireless medium; this configuration
determines basically a distributed (or “virtual” [7]) MIMO
channel, as shown in Fig. 1. Also, instantaneous CSI and
perfect synchronization are assumed at the DFC as in [7];
note that multiple antennas at the DFC do not make these
assumptions harder to verify w.r.t. (single antenna) MAC.

We denote: yn the received signal at the nth receive
antenna of the DFC after matched filtering and sampling;
hn,k ∼ NC (0, 1) the fading coefficient between the kth sensor
and the nth receive antenna of the DFC; wn the additive white
Gaussian noise at the nth receive antenna of the DFC. The
vector model at the DFC is the following:

y = Hx+w (1)

where y ∈ CN , H ∈ CN×K , x ∈ XK , w ∼ NC(0N , σ2
wIN )

are the received signal vector, the channel matrix, the trans-
mitted signal vector and the noise vector, respectively.

Remarks: The vector model in Eq. (1) can be underloaded
(K < N ), fully-loaded (K = N ) or overloaded (K > N ).
While in MIMO communication systems all the three sce-
narios are of interest, in the specific case of WSN only the
overloaded case is reasonable, as typically the number of
sensors is typically much larger than the number of antennas
that could be employed at the DFC (i.e. K � N ). Throughout
this paper we will refer to the channel SNR as the ratio
between the average total received energy from the WSN
Es = E

{
‖Hx‖2

}
and the one-sided power spectral density

of the continuous process noise σ2
w, that is SNR � Es/σ2

w =
KN/σ2

w. Note that the corresponding individual channel SNR
for the kth sensor will be SNRk = N/σ2

w.

III. DECODE-AND-FUSE

In this case, see Fig. 2a, the DFC aims at detecting the
presence of the target directly from the received signal vector
without any intermediate step to decode the transmitted vector.

A. Optimum Rule

The optimal test [24] for the considered problem can be
formulated as

Λopt � ln

[
p(y|H1)

p(y|H0)

] Ĥ=H1

≷
Ĥ=H0

γ (2)

2Note that in case of an absence/presence task, where H0 is less probable,
On-Off Keying (OOK) can be employed for energy efficiency purpose. In the
following we will refer only to BPSK, however the results presented in this
paper apply straightforward to OOK.

(a) Decode-and-Fuse.

(b) Decode-then-Fuse.

Fig. 2: Fusion approaches.

where Ĥ , Λopt and γ denote the estimated hypothesis, the LLR
(i.e. the optimal fusion rule, referred also as the “optimum” in
the following) and the threshold to which the LLR is compared
to. The threshold γ can be determined to assure a fixed system
false-alarm rate, if a Neyman-Pearson detection is employed,
or can be chosen to minimize the probability of error in Bayes
detection. An explicit expression of the LLR from Eq. (2) is
given by

Λopt = ln

[∑
x∈XK p(y|x)∏K

k=1 P (xk|H1)∑
x∈XK p(y|x)∏K

k=1 P (xk|H0)

]
(3)

= ln

⎡
⎣
∑

x∈XK exp
(
−‖y−Hx‖2

σ2
w

)∏K
k=1 P (xk|H1)∑

x∈XK exp
(
−‖y−Hx‖2

σ2
w

)∏K
k=1 P (xk|H0)

⎤
⎦

where we have exploited the conditional independence among
xk (given Hi), and of y from Hi (given x).

B. Maximum Ratio Combining (MRC)

The LLR of Eq. (3) can be simplified under the assumption
of perfect sensors [9], [19], i.e. (PD,k, PF,k) = (1, 0), k ∈ K.
In this case the transmitted vector x ∈ {1K ,−1K} and the
Eq. (3) reduces to:

ΛMRC = ln

⎡
⎣exp

(
− ‖y−H1K‖2

σ2
w

)
exp

(
− ‖y+H1K‖2

σ2
w

)
⎤
⎦ ∝ �(1t

KH†y) (4)

where in the r.h.s. we have neglected the terms that can be
incorporated in γ through Eq. (2). The following proposition
states that as in PAC case [2] the MRC is the low-SNR approx-
imation of the optimum of Eq. (3) when local performances
of sensors are identical.

Proposition 1. For low SNR, if (PD,k, PF,k) = (PD, PF ),
k ∈ K: ΛMRC ≈ Λopt.

Proof: See Appendix A.

C. Equal Gain Combining (EGC)

Motivated by the fact that ΛMRC resembles a MRC statis-
tics for diversity combining [25], cfr. Eq. (4), we propose a
further rule in the simple form of an equal gain combiner:

ΛEGC = �(z†y) (5)

z = ej·∠(H1K) (6)



CIUONZO et al.: CHANNEL-AWARE DECISION FUSION IN DISTRIBUTED MIMO WIRELESS SENSOR NETWORKS: DECODE-AND-FUSE . . . 2979

A similar expression was derived for MIMO beamforming and
combining systems in [26].

D. Max-Log Rule

Let us first recall the Max-Log approximation known from
turbo-codes literature [27]

ln

(
L∑

�=1

B�e
A�

)
= ln

(
L∑

�=1

eA�+ln(B�)

)

≈ max
�∈{1,2,...,L}

[A� + ln(B�)] (7)

where Ai ∈ R and Bi ∈ R+. The approximation in Eq. (7)
is accurate when one of the terms in the sum

∑L
�=1 B�e

A�

dominates over the remaining terms. LLR expression from
Eq. (3) is in the same form of Eq. (7), thus using this
approximation we obtain the following sub-optimal fusion
rule:

ΛMax−Log = min
x∈XK

[
‖y −Hx‖2

σ2
w

−
K∑

k=1

lnP (xk|H0)

]

− min
x∈XK

[
‖y −Hx‖2

σ2
w

−
K∑

k=1

lnP (xk|H1)

]
(8)

which can be interpreted as the difference between hypothesis
prior-weighted minimum distance searches.

Proposition 2. Max-Log Properties:

1) For low SNR, if (PD,k > 1
2 , PF,k < 1

2 ) : ΛMax−Log ≈
ΛMRC .

2) For low SNR, if (PD,k, PF,k) = (PD, PF ), k ∈ K, and
(PD > 1

2 ,PF < 1
2 ) : ΛMax−Log ≈ Λopt.

3) For high SNR : ΛMax−Log ≈ Λopt.

Proof: See Appendix B.
The above proposition states that under particular circum-

stances Max-Log approximates the optimum both in the low
and high SNR regime.

IV. DECODE-THEN-FUSE

In this case, see Fig. 2b, the DFC is based on the separation
of decoding and fusing stages. Firstly, the decoding block
computes an estimate of x, denoted x̂ in the following, from
y. Finally, the global decision Ĥ is taken on the basis of
x̂ using the Chair-Varshney (CV) rule [28], i.e. the optimal
fusion rule for noiseless channels, whose expression is given
by

ΛCV =

K∑
k=1

ûk ln

(
PD,k

PF,k

)
+ (1− ûk) ln

(
1− PD,k

1 − PF,k

)
, (9)

where ûk � x̂k+1
2 , k ∈ K. Note that when local sensor

performances are identical, i.e. (PD,k, PF,k) = (PD, PF ),
Eq. (9) reduces to a simple counting rule [28].

A. CV-ML

In this case x̂ is obtained through ML decoder [25] as

x̂ML = arg min
x∈XK

‖y −Hx‖2. (10)

In analogy to PAC case [2], CV-ML is the high-SNR ap-
proximation of the optimum of Eq. (3), as stated through the
following proposition.

Proposition 3. For high SNR: ΛCV−ML ≈ Λopt.

Proof: See Appendix C.

B. CV-MMSE

In this case the ML decoder is replaced with a sub-optimal
one presenting reduced complexity, obtained via the MMSE
solution [25]. The rule however needs to take into account the
correlation between symbols xk , k ∈ K, since they observe
the same phenomenon. This issue was addressed in [17] but
restricted to the case PD,k = 1 − PF,k. In the more general
case, the following MMSE decoder should be considered [29]:

x̂MMSE = sign
[
x+CH†(HCH† + σ2

wIN )−1(y −Hx)
]

(11)
where x � E{x} and C � E{(x − x)(x − x)†} are the
mean vector and the covariance matrix of x, respectively.
Their explicit expression is derived and reported in Appendix
D.

V. IMPLEMENTATION ISSUES

Practical implementation of LLR in Eq. (3) is difficult due to
exponential functions with large dynamic range especially for
moderate-to-high channel SNRs KN/σ2

w � 1. This becomes
a quite severe requirement for fixed point implementations
[8], [9], [19]. All the proposed sub-optimal rules instead
present numerical stability for realistic SNR values, although
they require a different degree of system knowledge and
they also differ in computational complexity. In Tab. I we
report a complete comparison of the aspects mentioned.
More specifically, for each fusion rule, we report the system
parameters required for implementation (first column), the
complexity w.r.t. both the number of sensors K and antennas
N (second column), numerical stability (third column) and
finally optimality properties under the assumption of identical
sensors performance (last column). Also, it is apparent that
the fusion rules requiring less a priori information and lower
computational complexity are EGC and MRC, while Max-Log
fusion rule is the only one exhibiting optimality at both low
and high SNR.

Note that CV-ML requires (PD,k, PF,k), k ∈ K, only if
local performances of sensors are different, cfr. Eq. (9); this is
not the case for CV-MMSE because local sensor performances
are always required in the decoding stage of Eq. (11). Finally,
MRC and EGC require only reduced knowledge of channel
matrix.

The dependence of the complexity with respect to N is
moderate for all the presented rules and it is polynomial in
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TABLE I: Comparison of the fusion rules.

Fusion Rule required parameters complexity stability optimality

Optimum (PD,k, PF,k), H , σ2
w O(2KN) no always

MRC H1K O(N) yes low SNR, if PD > PF

EGC ∠(H1K) O(N) yes never

Max-Log (PD,k, PF,k), H , σ2
w O(2(K−n2)N),n2 > 0 yes low SNR, if (PD > 1

2
, PF < 1

2
) - high SNR

CV-ML (PD,k, PF,k), H O(2(K−n1)N),n1 > 0 yes high SNR

CV-MMSE (PD,k, PF,k), H , σ2
w O(K(K +NK +N2)) yes never

the worst-case (CV-MMSE3). This justifies the deployment of
multiple antennas at DFC at the expenses of a slightly increase
in the complexity burden. The dominant term of complexity
for all the rules depends on the number of sensors K . The
only exceptions are MRC and EGC, whose computational
complexity, given by Eqs. (4) and (5), does not depend on
the number of sensors K . In such a case, the dependence
is only linear with respect to number of antennas, since
during channel estimation step only the N -dimensional vector
∠H1K (corresp. H1K), needs to be estimated.

Terms nj , j ∈ {1, 2}, are inserted to underline that the
Exp-complexity (with respect to K) of CV-ML and Max-Log
can be mitigated by a GSD implementation [23]. In fact, for
CV-ML, the equivalent problem x̂ = argminx∈XK ‖D(ρ −
Hx)‖2 in place of Eq. (10) can be efficiently solved, with
D denoting the upper-triangular matrix deriving from the
Cholesky Factorization of G � H†H + βIN (that is G =
D†D) and ρ � G−1Hy.

Differently, GSD implementation of Max-Log rule requires
slight modifications to the steps followed in [23]. The steps,
reported in Appendix E, lead to

ΛMax−Log = min
x∈XK

[
‖D(ρ−Hx)‖2

σ2
w

−
K∑

k=1

lnP (xk|H0)

]

− min
x∈XK

[
‖D(ρ−Hx)‖2

σ2
w

−
K∑

k=1

lnP (xk|H1)

]
(12)

The computation of Eq. (12) can be easily performed through
a double search with GSD (one for each hypothesis) or with
a more efficient single search, following the same approach
in [30]. In both cases the complexity of Max-Log is always
higher than CV-ML, that is n1 > n2. Detailed results on the
complexity reduction deriving from the GSD implementations
of minimum distance searches can be found in [23].

VI. SIMULATION RESULTS

In this section we compare the performances of the pre-
sented fusion rules in a WSN with sensors of identical local
performances (PD,k, PF,k) = (PD, PF ), k ∈ K. Unless
differently stated, we assume (PD, PF ) = (0.5, 0.05) as
adopted in [2], [4], [9], [14] for fusion rules comparison
in PAC. The global performances are analyzed in terms of
system probabilities of false alarm, detection and error, defined

3It is worth remarking that CV-MMSE complexity in Tab. I has been
derived under the assumption K � N .

respectively as

PF0 � P (Λ > γ|H0), PD0 � P (Λ > γ|H1), (13)

PE0 � min
γ

{[1− PD0(γ)]P (H1) + PF0(γ)P (H0)} , (14)

with Λ representing the decision statistics of a generic fusion
rule. In the following figures, for comparison purposes, we
report the (upper) “observation bound” [5], i.e. the optimum
performances over noiseless channel, given by:

P obs
D0

=

K∑
i=Kγ

(
K

i

)
(PD)i(1− PD)K−i, (15)

P obs
F0

=
K∑

i=Kγ

(
K

i

)
(PF )

i(1− PF )
K−i. (16)

where Kγ is a discrete threshold.
Receiver Operating Characteristic (ROC): In Fig. 3 we

show the ROC (i.e. PD0 vs PF0 ), for the presented rules in a
WSN with K = 8 sensors and N = 2 antennas at the DFC,
under a channel (SNR)dB = 15 (corresp. (SNRk)dB ≈ 6).
It is apparent that Max-Log and Optimum ROCs are quite
similar, but far from the observation bound. Instead ROCs of
the MRC and EGC present a crossing point; the same happens
between CV-ML and CV-MMSE. However while in the first
case the result is independent of the specific channel SNR, in
the latter case it depends on the poor performances of CV-ML
statistics, due to the low channel SNR. This implies that when
a fixed (low) PF0 is imposed, as in typical Neyman-Pearson
test [24], the MRC is a more attractive choice than EGC,
in juxtaposition with the PAC case [2], [3]. The difference
comes from the impossibility of vector z in Eq. (5) to sum
the contributions of all the sensors coherently.

PD0 vs (SNR)dB: In Fig. 4 we show, for the presented
rules, PD0 as a function of the channel (SNR)dB, under
PF0 ≤ 0.01, in a WSN with K = 8 sensors (corresp.
(SNRk)dB = (SNR)dB − 10 log10 K ≈ (SNR)dB − 9);
we plot the cases N ∈ {1, 2} to investigate the effect on
performances when two antennas are employed at the DFC.
Firstly, numerical results confirm analytical derivations, i.e.
CV-ML and MRC approach the optimum at high and low
channel SNR, respectively, also in MIMO scenario. Max-Log
is optimal at high SNR and also it strictly approaches the
same performances as the optimum over all the SNR range
considered (i.e. [0, 30]dB); the pay-off is a high requirement
on system knowledge and computational complexity (cfr. Tab.
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Fig. 3: ROC for the presented rules. WSN with K = 8 sensors,
(PD,k, PF,k) = (0.5, 0.05), k ∈ K. N = 2, (SNR)dB = 15.

I). It is worth noticing that curves corresponding to DtF rules
in Fig. 4 exhibit jumpy-step and non-monotonic behaviors in
the case of CV-ML (as pointed out in [14] for PAC) and CV-
MMSE rules, respectively. Such phenomena are not surprising
when related to the discrete nature of CV decision statistics
as well as the operation point on the corresponding ROC.
More specifically, the operation point does NOT show a fixed
probability of false alarm with respect to SNR, and both prob-
abilities of detection and false alarm are sometimes lowered
in order to meet the constraint on the maximum allowed
probability of false alarm. Finally CV-MMSE performs fairly
better than CV-ML at low-medium SNR, as it exploits the local
sensor performances information in the decoding stage. All the
rules significantly benefit from the presence of two antennas
at DFC (cfr. solid with dashed lines in Fig. 4). Max-Log (as
the optimum) has the best improvement in the range [5, 20]dB
and reaches the observation bound at (SNR)dB ≈ 20, instead
of (SNR)dB ≈ 30 when N = 1 at the DFC. CV-ML rule
needs higher SNR to get acceptable performances, but the case
N = 2 still needs less energy to reach the observation bound
(in fact if N = 1 the bound is reached at (SNR)dB > 30,
not visible in Fig. 4). Finally multiple antennas not only
increase MRC, EGC and CV-MMSE performances at low-
medium SNR, but also give better limiting performances.

PD0 vs N : In Fig. 5, we show, for the presented rules,
the PD0 as a function of the number of antennas N , under
PF0 ≤ 0.01; we plot the cases (SNR)dB ∈ {5, 15} to
investigate the performances when N increases under realistic
channel SNR values. It is apparent that adding more antennas
at the DFC is beneficial for all the rules presented, however
a saturation effect is present. The saturation depends on
the SNR and the chosen fusion rule. In particular, specific
configurations achieve the observation bound (e.g. Max-Log
with N = 4 at (SNR)dB = 15) while others (e.g. MRC with
N = 6 at (SNR)dB = 5) exploit all the diversity gain.

PE0 vs K: In Figs. 6 and 7 we show, for the presented rules,
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Fig. 4: PD0 vs channel (SNR)dB for the presented rules;
PF0 ≤ 0.01. WSN with K = 8 sensors, (PD,k, PF,k) =
(0.5, 0.05), k ∈ K. N ∈ {1, 2}.
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Fig. 5: PD0 vs N for the presented rules; PF0 ≤ 0.01. WSN
with K = 8 sensors, (PD,k, PF,k) = (0.5, 0.05), k ∈ K.
(SNR)dB ∈ {5,15}.

the system probability of error PE0 (under the assumption
P (Hi) = 1/2, Hi ∈ H) as a function of the number of sensors
K; we plot the case (PD, PF ) � (0.7, 0.05) to emphasize
the results observed. We consider a WSN with N = 1, 2
(corresp. Fig. 6 and 7) antennas at DFC and a channel
(SNR)dB = 15. The latter assumption clearly represents a
total power constraint (TPC) [18], [31] on the WSN, i.e.
the individual channel SNR for the kth sensor is scaled as
SNRk = SNR

K . We also report the (upper) “communication”
bound [5], i.e. PE0 under the assumption of ideal sensors, i.e.
(PD, PF ) = (1, 0). In this case the bound is represented by
the symbol error probability of a N branch MRC combiner
[32], that is P comm

E0
=
(
1−μ
2

)N ∑N−1
l=0

(
N−1+l

l

)
(1+μ

2 )l, where

μ �
√

SNR
SNR+N . Simulations show that all the rules, except

for MRC, present a unimodal behaviour, i.e. there exists a
finite number of sensors, under a fixed (SNR)dB value, which
minimizes PE0 . This implies that when fusing decisions using
those rules, less sensors with a higher individual battery energy
are more beneficial than several sensors with poor energy-
powered batteries for improving performances. Instead, when
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antenna at DFC and channel (SNR)dB = 15; (PD,k, PF,k) =
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Fig. 7: PE0 vs K for all the rules presented; WSN with
N = 2 antennas at DFC and channel (SNR)dB = 15;
(PD,k, PF,k) = (0.7, 0.05), k ∈ K.

fusing with MRC, the suggested trend is to divide the available
energy among as many sensors as possible. Furthermore, some
specific facts needs to be clarified:

• PEGC
E0

is lower than PMRC
E0

in Figs. 6,7; this result does
not contradict Figs. 4,5 because the ROCs of the two
rules present an intersection point, cfr. Fig. 3, so that the
EGC is better than MRC from a Bayesian point of view.
The optimal point on ROC which minimizes PE0 is on
the right of the intersection point.

• An increase in number of antennas N gives a decrease
in minimum PE0 attainable by every rule; the minimum
is typically obtained with a larger number of sensors K .
For example with CV-ML when N = 1 the minimum
PCV−ML
E0

≈ 0.11 is obtained with K = 2 sensors;
however when N = 2 the minimum PCV−ML

E0
≈ 0.05

is obtained with K = 5 sensors. Finally, the increase of
N affects slope and limiting value of PMRC

E0
for MRC;

this means that the same PMRC
E0

when using multiple
antennas can be obtained with less equal-battery sensors.

VII. CONCLUSIONS

In this paper we addressed the design of sub-optimal fusion
rules, more suitable for practical implementation than the exact
LLR, for a DF task performed over a virtual MIMO channel.
The study was motivated by the need of multiple antennas at
the DFC to obtain a dramatic improvement in performances
with a reduced WSN energy budget. The presented alternatives
solve the issues about fixed point implementations and present
a wide spectrum of choices for reduced complexity and lower
system knowledge. Max-Log, MRC and CV-ML, as in the
PAC case, confirm also their asymptotic optimality properties.
Nonetheless, all these rules still significantly benefit from the
addition of multiple antennas at the DFC, with a saturation on
performance depending on the specific rule and channel SNR.
Finally, all these rules present an optimal number of sensors
to be employed to minimize the system error probability,
under a total power constraint. The exception is represented
by MRC, which shows decreasing system probability of error
as a function of the number of sensors. The latter property
configures MRC as a more convenient choice when a huge
number of low-powered sensors are available for the task.
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APPENDIX A
PROOF OF PROPOSITION 1

From definition of exact LLR in Eq. (3) if we observe
that for low SNR (E{‖Hx‖2}/σ2

w � 1), exp
(
−‖y−Hx‖2

σ2
w

)
≈

exp
(
−‖y‖2

σ2
w

)(
1− ‖Hx‖2−2�{y†Hx}

σ2
w

)
, we get

Λopt ≈ ln

⎡
⎣
∑

x∈XK

(
1− ‖Hx‖2−2�{y†Hx}

σ2
w

)∏K
k=1 P (xk|H1)∑

x∈XK

(
1− ‖Hx‖2−2�{y†Hx}

σ2
w

)∏K
k=1 P (xk|H0)

⎤
⎦

(17)
Exploiting the normalization property

∑
x∈XK P (x|Hi) =

1, and using the approximation ln(1 + x) ≈ x, when x � 1,
we obtain:

Λopt ≈ 2�{y†H (E{x|H1} − E{x|H0})}
σ2
w

+ α (18)

where α is a term not depending on y. When local per-
formances are identical, E{x|H1} = 1K(2PD − 1) and
E{x|H0} = 1K(2PF − 1), the LLR reduces to:

Λopt ≈ (PD − PF )
4�{y†H1K}

σ2
w

+ α (19)

Eq. (19) represents the same statistics as Eq. (4), since the
terms (PD − PF )

4
σ2
w

(recall that PD > PF ) and α can be
incorporated in the threshold γ of Eq. (2) .
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APPENDIX B
PROOF OF PROPOSITION 2

Part 1): Starting from the expression of Max-Log formula
of Eq. (8) let us define:

x̂i � arg min
x∈XK

[
‖y −Hx‖2

σ2
w

−
K∑

k=1

lnP (xk|Hi)

]
, Hi ∈ H

= arg min
x∈XK

[
‖Hx‖2 − 2�{y†Hx}

σ2
w

−
K∑

k=1

lnP (xk|Hi)

]

(20)

where in the second line we have neglected the irrelevant term
‖y‖2

σ2
w

. For low SNR (E{‖Hx‖2}/σ2
w � 1), the first term of x̂i

becomes irrelevant, so that the minimum is determined by∑K
k=1 lnP (xk|Hi). If PD,k > 1

2 and PF,k < 1
2 , k ∈ K, then

x̂0 ≈ −1K and x̂1 ≈ 1K . Using these approximations in
Eq. (8) provides:

ΛMax−Log ≈ ‖y +H1K‖2
σ2
w

− ‖y −H1K‖2
σ2
w

+ δ (21)

where δ � ln
∏K

k=1 PD,k∏K
k=1(1−PF,k)

is not dependent on y. Eq. (21)
is identical to MRC, cfr. Eq. (4), since δ can be easily
incorporated in threshold of Eq. (2).

Part 2): The property is easily demonstrated by combining
Propositions 1 and 2.1 .

Part 3): Starting from the expression of Max-Log formula
of Eq. (8), for high SNR (E{‖Hx‖2}/σ2

w � 1), we have that
x̂i ≈ x̂ML, since the first term in r.h.s. of Eq. (20) becomes
dominant. Note that the term x̂ML is the same given by
Eq. (10). Thus substituting the approximate expressions of x̂i

in Eq. (8), we obtain the same rule as in Eq. (23), which is
the CV-ML statistics. Since for high SNR, ΛCV−ML ≈ Λopt

(Proposition 3, Appendix C), then ΛMax−Log ≈ ΛCV−ML ≈
Λopt.

APPENDIX C
PROOF OF PROPOSITION 3

For high SNR (E{‖Hx‖2}/σ2
w � 1), if we denote the true

transmitted vector as xT , the corresponding value in Eq. (3)
will be a dominating term of the sums at numerator and
denominator; the LLR is then well approximated by

Λopt ≈ ln

⎡
⎣exp

(
−‖y−HxT ‖2

σ2
w

)∏K
k=1 P (xk,T |H1)

exp
(
−‖y−HxT ‖2

σ2
w

)∏K
k=1 P (xk,T |H0)

⎤
⎦ (22)

= ln

[
K∏

k=1

P (xk,T |H1)

]
− ln

[
K∏

k=1

P (xk,T |H0)

]
.

Also, for high SNR, the ML estimate x̂ML =
argminx∈XK ‖y − Hx‖2 ≈ xT , i.e. the ML decoder
works near perfectly. Thus Eq. (22) reduces to

Λopt ≈ ln

[
K∏

k=1

P (x̂k,ML|H1)

]
− ln

[
K∏

k=1

P (x̂k,ML|H0)

]

(23)

which can be rearranged easily to obtain Eq. (9).

APPENDIX D
CV-MMSE MOMENTS

We derive explicit expressions for x = E{x} and C =
E{(x− x)(x− x)†} to be inserted in Eq. (11).

Proposition 4. The explicit expressions of x and C are given
by:

xk = PF,k + PD,k − 1 k ∈ K (24)

c�,j = r�,j − x�xj �, j ∈ K (25)

r�,j =

{
1 � = j
(2PF,�−1)(2PF,j−1)+(2PD,�−1)(2PD,j−1)

2 � �= j
(26)

Proof: The kth element of the mean vector xk can be
expressed as :

xk = E{xk} =
∑
i=0,1

E{xk|Hi}P (Hi) (27)

Assuming equally likely priors (i.e. P (Hi) = 1/2, Hi ∈ H),
observing that E{xk|H0} = 2PF,k − 1 and E{xk|H1} =
2PD,k−1, and substituting these expressions in Eq. (27) gives
Eq. (24). Define r�,j as the (�, j)th element of the correlation
matrix R = E{xx†}, i.e.

r�,j = E{x�xj} =
∑
i=0,1

E{x�xj |Hi}P (Hi) (28)

=

{
1
2

∑
i=0,1 E{x�xj |Hi} � �= j

1
2

∑
i=0,1 E{x2

� |Hi} � = j
(29)

Exploiting the conditional independence (given Hi) of x�

and xj we have that E{x�xj |Hi} = E{x�|Hi}·E{xj |Hi} and
observing that E{x2

� |Hi} = 1, Hi ∈ H, we obtain Eq. (24).

APPENDIX E
MAX-LOG GSD DERIVATION

Proposition 5. The Max-Log formula of Eq. (8) can be
expressed in the equivalent form:

ΛMax−Log = min
x∈XK

[
‖D(ρ−Hx)‖2

σ2
w

−
K∑

k=1

lnP (xk|H0)

]

− min
x∈XK

[
‖D(ρ−Hx)‖2

σ2
w

−
K∑

k=1

lnP (xk|H1)

]
(30)

Proof: To prove this proposition we follow similar steps
as in [23]. Starting from the expression in Eq. (8), adding
and subtracting the constant term β x†x

σ2
w

(recall that BPSK is a

constant modulus modulation, i.e. x†x = K) and simplifying
the term ‖y‖2

σ2
w

we get Eq. (31) at the top of the next page.
Denote D the upper-triangular matrix deriving from the

Cholesky Factorization of G � H†H + βIN (that is G =
D†D) and ρ � G−1Hy. We can add and subtract the
term ρ†D†Dρ

σ2
w

to both the minimum problems and use the
relationships now defined to straightly obtain Eq. (30). The
new squared radius choice r2new for pruning is given by

r2new = r2 +
βx†x+ y†HG−1H†y − y†y

σ2
w

(32)
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ΛMax−Log = min
x∈XK

[
x†(H†H + βIN )x− y†Hx− x†H†y

σ2
w

−
K∑

k=1

lnP (xk|H0)

]

− min
x∈XK

[
x†(H†H + βIN )x− y†Hx− x†H†y

σ2
w

−
K∑

k=1

lnP (xk|H1)

]
(31)

where r represents the radius of the original test[
‖y−Hx‖2

σ2
w

−∑K
k=1 lnP (xk|Hi)

]
< r2, Hi ∈ H .

The computation of the radius in Eq. (32) can be avoided
if depth-first Schnorr-Euchner enumeration strategy is adopted
in the pruning process [33].
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